Skriv ut som pdf om du vill ha en pdf! Om du vill ha en snyggare utskrift, klicka bort webbläsarens automatiskt tillagda sidhuvud och sidfot.

Blekinge Tekniska Högskola
Institutionen för matematik och naturvetenskap

Revision: 2
Dnr: BTH-4.1.14-0034-2024


Kursplan

Linjär algebra

Linear Algebra

6 högskolepoäng (6 credits)

Kurskod: MA1498
Huvudområde: Matematik
Utbildningsområde: Naturvetenskapliga området
Utbildningsnivå: Grundnivå
Fördjupning: G1N - Grundnivå, har endast gymnasiala förkunskapskrav

Undervisningsspråk: Svenska
Gäller från: 2024-02-28
Fastställd: 2024-02-28

1. Beslut

Denna kurs är inrättad av dekan 2023-02-03. Kursplanen är fastställd av prefekten vid institutionen för matematik och naturvetenskap 2024-02-28 och gäller från 2024-02-28.

2. Förkunskapskrav

Grundläggande behörighet samt Fysik 1 och Matematik 4/Matematik E.

3. Syfte och innehåll

3.1 Syfte

Studenten ges en introduktion till linjär algebra för att, i ingenjörsmässiga sammanhang, kunna lösa tillämpade problem och kommunicera med matematiskt språk.

3.2 Innehåll

  • Matematiskt språk och notation: Exempelvis definition, sats, bevis samt för matematiken vanliga ord och fraser.

  • Linjära ekvationssystem:

    • Lösning medelst Gauss-eliminering och bakåtsubstitution.

    • Matrisrepresentation.

    • Existens och entydighet av lösningar.

    • Överbestämda ekvationssystem och minstakvadratmetoden.

  • Analytisk geometri:

    • Koordinatsystem, punkt, linjestycken, riktad sträcka, linje och plan.

    • Geometrisk tolkning av lösningsmängder till linjära ekvationssystem.

  • Vektoralgebra:

    • Linjärkombination, linjärt oberoende, bas, orientering, dimension, koordinatsystem, och basbyten.

    • Skalärprodukt, vinklar och ortogonalitet, vektornorm samt normerad bas.

    • Vektorprodukt.

  • Matrisalgebra:

    • Räkneregler, transponat, invers matris, ortogonal matris, matrisekvation, basbytesmatris och spår.

  • Matriser som avbildningar:

    • Spegling, projektion och rotation.

    • Invers och sammansättning.

  • Determinanter:

    • Determinanter för kvadratiska matriser av ordning två och tre.

    • Geometrisk tolkning och egenskaper.

  • Egenvärden och egenvektorer för kvadratiska matriser av ordning två och tre.

  • Diagonalisering av matriser.

  • Exempel på tillämpningar av linjär algebra inom teknik- och ingenjörsvetenskap.

4. Lärandemål

Följande lärandemål examineras i kursen:

4.1. Kunskap och förståelse

Efter genomförd kurs ska studenten kunna:

  • visa förståelse för begrepp och satser inom de delar av linjär algebra som ingår i kursinnehållet.

4.2. Färdighet och förmåga

Efter genomförd kurs ska studenten kunna:

  • lösa beräkningsuppgifter och problem inom de delar av linjär algebra som ingår i kursinnehållet.

4.3. Värderingsförmåga och förhållningssätt

Efter genomförd kurs ska studenten kunna:

  • visa att hen har erfarit behandlade metoders användbarhet och begränsningar i numeriska beräkningar.

5. Läraktiviteter

Under kursen erbjuds föreläsningar, studentaktiva gruppövningar och tillgång till digitala uppgifter med omedelbar återkoppling.

Dessa förbereder studenten inför examinationsmomenten som anges i avsnitt 6.

Salstentamen1, 2 och 3 äger rum under undervisningsperioden, i form av digitala quiz eller motsvarande, och prövar studentens förmåga att lösa beräkningsuppgifter.

Laborationen är en datorlaboration som ger studenten erfarenhet av användning och begränsningar av kursens metoder i numeriska beräkningar.

Salstentamen 4 utgörs av en skriftlig sluttentamen, som prövar studenters förmåga att lösa uppgifter och problem, samt testar studentens förståelse för begrepp och satser.



6. Bedömning och examination

Examinationsmoment för kursen

Kod Benämning Omf. Betyg
2410 Salstentamen 1 0,5 hp GU
2420 Salstentamen 2 0,5 hp GU
2430 Salstentamen 3 0,5 hp GU
2440 Salstentamen 4 [1] 4,0 hp AF
2450 Laboration 0,5 hp GU

[1] Bestämmer kursens slutbetyg vilket utfärdas först när samtliga moment godkänts.

Kursen bedöms med betygen A Utmärkt, B Mycket bra, C Bra, D Tillfredställande, E Tillräckligt, FX Underkänd, något mer arbete krävs, F Underkänd.

I kurstillfällets information inför kursstart framgår i vilka examinationsmoment som kursens lärandemål examineras samt gällande bedömningsgrunder.

Examinator kan, efter samråd med högskolans FUNKA-samordnare, fatta beslut om anpassad examinationsform för att en student med varaktig funktionsvariation ska ges en likvärdig examination jämfört med en student utan funktionsvariation.

7. Kursvärdering

Kursvärdering ska göras i enlighet med BTH:s beslut om frågeställning i kursvärderingar och beslut om process för hantering och uppföljning av kursvärderingar.

8. Begränsningar i examen

Kursen kan ingå i examen men inte tillsammans med annan kurs vars innehåll, helt eller delvis, överensstämmer med innehållet i denna kurs.

9. Kurslitteratur och övriga lärresurser

Månsson, J. och Nordbeck, P., Linjär algebra, (2019 eller senare), Studentlitteratur AB, ISBN: 9789144127408.

Månsson, J. och Nordbeck, P., Övningar i Linjär algebra, (2019 eller senare), Studentlitteratur AB, ISBN: 9789144133553.

Kursmaterial på lärplattformen.


*Övriga lärresurser*

Läraren är en central lärresurs i kursen. Under schemalagda undervisningstillfällen förmedlas en mängd information om exempelvis lösningsstrategier, matematiska konventioner och kursnivå som inte kan förväntas erhållas på annat sätt än genom deltagande i klassrummet.


*Referenslitteratur*

Lay, D. C., Linear Algebra and Its Applications, (2021 eller senare), Pearson, ISBN: 9781292351216.

10. Övrigt

Denna kurs ersätter kursen MA1448